TEMPERATURE FIELD IN A PLATE CONTAINING
A SYSTEM OF HEAT SOURCES
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The temperature field is determined in a circular plate with a system of thin extrinsic heat
sources.

In designing and preparing engineering structures and instruments, in particular electrovacuum instru-
ments, it is of particular interest to determine and investigate the temperature field in plate-like elements
with a system of extrinsic inclusions.

We will examine a circular plate with radius R, containing thin extinsic circular heat sources, which are
positioned on concentric circles with radius bij(i=1, 2, ..., m) (Fig. 1). The number of inclusions on the i-th
circle is assumed to be nj and their radius Rj, while the specific intensity of the heat sources qj{7) in the in-
clusions is assumed to vary with time. On each of the circles, the inclusions can be positioned as follows:
Either the polar angle between the first and the nj-th inclusions is 2¢j, and they are symmetrically placed
relative to the radius of the plate, which we assume to be the origin for measuring the polar angle, and the rest
of the inclusions are positioned between the ones indicated at equal distances, or one of them is placed on the
radius, which serves as the origin for measuring the polar angle, and the rest of the inclusions are positioned
cyclically along the circle. Convective heat exchange with the external medium with temperature im(7) occurs
through the lateral surfaces of the plate z = 6. The end-face surface of the plate is assumed to be thermally
insulated. '

In order to determine the nonstationary temperature field in the plate being examined with the inclusions
we have the equation of heat conduction [1]
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and boundary conditions
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Fig. 1. Statement of the prob-
lem,
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Fig. 2. Computed temperature profiles for short times (¢ = 0; bi* =5): 1)
Fo = 0.5; 2) 1.0; 3) 3.0; 4) 5.0.

Fig. 3. Temperature profiles for different radii for the circles on which the
inclusions were placed, with n=6; ¢ = 0: 1) by* = 3.0; 2) 5.0; 3) 8.0.

Conditions (4) follow from the physical symmetry of the system. In the case being examined, it is clear
that ¥ = 7, but in some particular cases the value of ¥ can be different.

Let us replace the circular inclusion by an inclusion with 2 cross section shaped like a curvilinear tra-
pezium, and in addition, the transverse cross-sectional areas in both cases must be identical. We will write
down the thermophysical characteristics of such a system with the help of the characteristic functions [2] in
the following form:

m i (5)
Bv =B+ N BB M) Y N (o).
i=1

k=1
where
Mi(r) = S(r —bi+ R)—S(r—b; — R); ©)
Nin(9)=S(0— 0 +8) — S (P — @i, — &3); (7)
g = wRi/4bi is chosen from the identity of the cross sectional surface areas; @ik = [(@r — Zqoi)/rf{](k = 1)+ ¢

nj* = nj — 1 under the condition that ¢; # 0, and nj* = nj, ¢; = 0 with cyclical positioning of inclusions along
the circle;

1, x>0,
1
S)=1!1—, x=0,
() 9
0, x<<0

is the unit symmetrical function; the plate characteristics are labeled with the index zero, while i labels the
inclusion on the i-th circle.

We will write the specific intensity of the heat sources in the form
Wi e 0= @M@ S V). ®)
i=1 k=1

Taking into account the fact that the inclusions are thin, we will represent the characteristic functions in
expressions (6) and (7) in the form [3]
Zi &(r—0bs, Ri) 8(9— i, &), (9)

13

M; (r) Ny (9) =

where 6 (x, h) = (S(x + h) — S(x —h))/2h with h — 0; 0f = TFR% is the transverse cross -sectional area of an inclu-
sion.
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Substituting the thermophysical characteristics (5) and the specific intensity of the heat sources in sys-
tem (8) taking into account the equality (9) in Eq. (1), applying the Laplace transformation with respect to time
taking into account the initial condition (2) and the finite Fourier cosine transformation with respect to the an-
gular variable in the limits from zero to ¥ and the boundary conditions (4) and taking the limit for Rj — 0, for
which ¢j remains constant, we obtain the following equation for the transforms with impulse-type singularities
on the right side:

1 dT : 7
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r dr r?

—
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dr?

I

(10)

where

F(r, 0, 5) = — %3 yi_+ S AS(r—b) for p=0;

i=1

f(ro p, 8)= 2 B8(r—b;) for p=1;
i=1
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C; . Mg . 2 o; .
gi:(xi*—l)—l;;" 7»?‘:‘5:;*7 xi:(%ik?‘—%'é)?‘i—,
g 9o 1/ 5
dl bi y Ql }\10 bi 3 'Y ao +% »

g
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1]
» |
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L; takes values so that ¢j1; =¥, while Pi(Li+1) = P.

Finding the solution [4] of Eq. (10) taking info account the boundary conditions (3) in the case that p =10
and p = 1, respectively, and applying the transformation formula for the finite Fourier cosine transform, we
obtain the following expression for the Laplace transform of the temperature field:

- 7 1 < =
T(@r, @, ) =% -0— — b; [AiF (v, R, by, 1) 12 B;Fy(v, R, b;, r) cosvg|, (11)
" ; ’ Z‘l ( )
where
Fo(y, R, by, 1) = Ky(v03) Ly(r) S (b: —7) + Ly (vb:) Ky (vr) S(r— 1) — P, L, (vb:) I, (vr);

_ Ky (YR)— YRK,,1 (WR)

* wI,(vR) + TRIw.4 (WR)
. L aT oT m .
In order to determine the unknown quantities Tlr—s, I s, _03\ , 02 system of 32 iL;  algebraic
=0z At i =1
P=D;ip 9=z

equations follows from (11):
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where Hy(v, R, by, b)) — 2o

dr

r==bj
Iet us examine a plate with n extrinsic heat sources, cyclically placed on a single circle. In this case,
in (11)

m=1, ¢=0; nf =n; Q= 2 (k—1), k=12, ..., n
n
Y= —; Li=1; v=mnp
fl
Then
- i o
Tir, 0, 9= g 22— 2 Ab [Fo (v R by D423 Folr R by, 1) cospnqﬂI , (13)
p=1 N
where
s oT -
= |y — o, o — it
A=0,5 (v T\(r;:bd g1 r |rms, x1tm Q).
=0
In order to determine the quantities T{,:%, and %; from (12) we obtain the following system of algebraic
o= r=b;
equations =0
. aT
GuTlr=s, + Gio - b f1,
=0 =0 (14)
5 oT
GmTiqr;%l + Gzza_r s, f2s
Q=0
where
n n
Gy =14+ — o Di(y, R, by); Gu=— — gDy (v, R, by);
25 21

n n
Gy = — b Dy (v, R, by); Gp=1— — gibiDy (v, R, by);
2n 2w

o= 2 o g b Oufart Q) DiCr R B0 fa= g bt @) Dyt Ry b
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D1(Y, R’ bi):FO(v: R! bi: bi)—|—2 2 Fv(’?: R: bi’ bl)’
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o

D2(’Y’ R7 bi):HO(vv Rv b17 b1)+22 Hv(va Ra b17 bi)'

p=1

Determining the quantities 7},_s, and T from (14) and substituting them into expression (13), we
have 9=0 or n=
%2 -
} I n e - (15)
) — 4,2
T(r, ¢, s)=x2 + o by 3 [Fo(v, R, by, 1) -2 E Fv(3, R, by, 1) Cospmp} ,
p=1

where A=1+(n/2m)wbD;(v, R, b))~ (n/2m)gbDy(v, R, by).

Assuming that the temperature of the external medium and the specific intensity of the heat sources in
the inclusions vary in time according to the law

t 1) = 1S, (1) and ¢4 (1) = oS, (1) (16)

we obtain

%
. t n (‘01 ’i:;"”"Xi) th—Q w @mn
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sy 2n sA p=1
where Q,—= = %L . S (v)= Lom>00 s the asymmetric unit function.
0 +
Ao by 0, <0

From expression (17), we obtain an expression for the temperature field for an infinite plate in the ab-
sence of heat sources in the inclusions for short times in the section ¢ = 0. In this case, P, =0, ¢y =0, and
taking into account the approximation of the modified Bessel functions for large values of the argument, in
which we neglect all terms in the expansion other than the first, we have from (17) with r > 0

F _ fy M(2) fy Kg pA ) ] / b (18)
T(r, 5)—— T?Z-—*‘_S_ ?2‘*—__“(—1;: —r—exp[——ylr—bill

Transforming in (18) to the original function and writing it in dimensionless form, we obtain
¥ —_—
9= 1 —exp(— BigFo) + - |/ o {exp (— I Fo) [exp (VFF 16T — o) x
% erfe lb—l*ip—[ +V [¥Fo | +exp {(— V IT 167 —pl) erfc (li::pl — (19)
2V Fo 23 Fo

_ Vﬁ)] — 2exp (— Bi,Fo) erfc (tf‘/—%l )} )

where
g L Fo) o Bi,C¥ — BiAl i = BijAf —Bi,
t ’ c¥—1 ' c¥—1 7’
Bxk:@, k=0, 1, Fo=""; pr= s L
M & 8 8

Y

erfe (x) == T/Q_: S exp (— u2) du.
k1

X

In the stationary thermal regime, we have from (17)
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Using formulas (19) and (20), the temperature field in a glass plate (A = 0.798 W/m-K; C, = 1642.2 J/m?®-
K) with metallic inclusions (3, = 15.12 W/m- K; C; = 3788.4 J/m® K) was computed. In this case, it was as-
sumed that Bi, = 0.01; Bi; = 0.1.

Figure 2 shows the results of a calculation of the temperature profiles for an infinite plate in the section
@ = 0 for short times with by* = 5. It is evident from the graph that the temperature increases with time,

The calculation for the stationary temperature regime was carried out for Po = 1.0; R;* = 0.1; R* =10.
Figure 3 shows the temperature profiles as a function of the polar radius with ¢ = 0, n = 6 for different values
of the radius of the circle on which the inclusions were placed. Figure 4 shows the temperature profiles as a
function of the polar angle with p = b;* = 5 for different numbers of inclusions. As the radius of the circle on
which the inclusions are placed increases, the temperature of the plate decreases. Increasing the number of
inclusions with fixed radius of the circle on which they are placed increases the temperature.

NOTATION

T, temperature in the plate with the inclusions; r, polar radius; ¢, polar angle; 7, time; Mr, ¢), coeffi-
cient of thermal conductivity; a(r, ¢), heat transfer coefficient; C(r, ¢}, volume heat capacity; W{r, ¢, 7),
specific intensity of the heat sources; &, half thickness of the plate; 5(x), Dirac's delta function; T, finite
Fourier cosine transform of the temperature; p, parameter for this transformation; T, Laplace transform of
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the femperature; s, its parameter; I,(x), the Bessel function with imaginary argument of order v; Ky (x), the
MacDonald function of order v; <4 and @, dimensionless temperature; Po, Pomerantz number; Bi, Biot number;
Fo, Fourier's number; p, dimensionless polar radius; by*, dimensionless radius of the circle on which the in-
clusions are placed; R*, dimensionless radius of the plate.
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NUMERICAL METHOD FOR SOLVING HEAT-CONDUCTION
PROBLEMS FOR TWO-DIMENSIONAL BODIES OF COMPLEX
SHAPE

Yu. K. Malikov and V. G. Lisienko UDC 536.24.02

A finite-difference scheme is described for a curvilinear orthogonal net which permits the use
of a single algorithm for calculating bodies of various shapes.

The construction of curvilinear difference nets by calculating the conformal mapping of a canonical
region (rectangle) into the given region was described in [1]. Unlike a rectangular net which is typical for
the finite-difference method [2-4] and in practically important cases bears little resemblance to the bound-
aries of the body, an orthogonal net reflects the nature of the boundary, and has no nonregular nodes. An
orthogonal net is more convenient to work with than the nets commonly used in the method of finite elements
[5] since all quantities referring to the nodes of such a net (e.g., their coordinates) can be written in the form
of a rectangular matrix. Using equations of the elliptic type as an example, variational-difference schemes
for such nets were discussed in [6].

An analysis in [7] showed that finite-difference schemes have distinct advantages over variational-dif-
ference schemes in solving heat-conduction problems. For this reason the finite-difference method is of
great interest for solving heat-conduction problems with orthogonal nets [8]. The practical use of the algo-
rithm obtained confirmed its adequate accuracy, high speed, and, what is particularly important, the simplic-
ity of its application for bodies of various shapes. However, it is not clear from [8] under what conditions
and at what rate the scheme converges to the solution of the original equation.

We describe a procedure which employs a set of standard programs to automate the process of solving
the heat-conduction equation for a broad class of two-dimensional regions. Ifan orthogonal net is constructed
by conformal mapping, the rate of convergence of the finite ~difference scheme can be estimated.

Let the function F(w) = F(u + iv) map the rectangle G conformally into the region G* in the (x, y) plane.
We assume that F(u + iv) is known and that 8F /0w exists and is finite on the boundary Tof the rectangle. The
latter implies that G* is a curvilinear quadrangle in which all the angles are right angles.

We consider the problem for the heat-conduction equation posed in G*:
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